Category Theory Notes

Edward Burkard

6. CATEGORIES AND SHEAVES

6.1. The Language of Categories. Intuitively, a category can be thought of as a bunch of "dots and arrows", where the arrows satisfy some certain properties. The "dots" are the objects of a category, and the "arrows" are the morphisms. Formally, we define a category as:

Definition 1 (Category). A category C consists of:

- a class of objects, denoted $Ob(\mathcal{C})$
- for any $A, B, C \in Ob(\mathcal{C})$, a class of morphisms, $Hom_{\mathcal{C}}(A, B)$, together with a composition

$$\circ: \operatorname{Hom}_{\mathcal{C}}(A,B) \times \operatorname{Hom}_{\mathcal{C}}(B,C) \to \operatorname{Hom}_{\mathcal{C}}(A,C)$$
$$(f,g) \mapsto g \circ f$$

which is

- (1) associative
- (2) has an identity: for $A, B \in Ob(\mathcal{C})$ there is $id_A \in Hom_{\mathcal{C}}(A, A)$ and $id_B \in Hom_{\mathcal{C}}(B, B)$ such that for all $f \in Hom_{\mathcal{C}}(A, B)$ we have $id_B \circ f = f = f \circ id_A$.

We call a category small if $Ob(\mathcal{C})$ is a set and all $Hom_{\mathcal{C}}(A, B)$ are sets. We say \mathcal{C} is locally small if only the second condition is satisfied.

Here are some trivial examples of categories:

- **0**: This is the category with no objects and no morphisms. This is it pictorally:
- 1: This is the category with one object and one morphism. The definition of a category forces this morphism to be the identity morphism on the one object. Here it is pictorally:

2: This is the category with two objects and one morphism between them (of course me must still have the identity morphisms on each element). Pictorally 2 looks like:

Now for some nontrivial examples:

Category	Objects	Morphisms
Set	Sets	Functions
Тор	Topological Spaces	Continuous Maps
Man	Smooth Manifolds	Smooth Maps
\mathbf{Vect}_M	Smooth Vector Bundles over M	Smooth Maps which are linear of fibers
$\mathbf{Open}(X)$	Open subsets of a topological space X	Given $U, V \in Ob(\mathbf{Open}(X)))$
		$\operatorname{Hom}_{\mathbf{Open}(X)}(U,V) = \begin{cases} \{*\} & U \subset V \\ \varnothing & otherwise \end{cases}$
Grp	Groups	Group Homomorphisms
Ab	Abelian Groups	Group Homomorphisms
<i>R</i> -Mod	Left R -modules	<i>R</i> -module Homomorphisms
k-Vect	k-Vector Spaces	k-linear maps
Pos	Partially Ordered Sets (Posets)	Order Preserving Maps
$\mathbf{Ord}(P)$	Elements of a Poset P	Given $x, y \in Ob(\mathbf{Ord}(P))$
		$\operatorname{Hom}_{\mathbf{Ord}(P)}(x,y) = \begin{cases} \{*\} & x \leq y \\ \varnothing & otherwise \end{cases}$
$\mathbf{Ord}(P)$	{*}	$\operatorname{Hom}_{\mathbf{Ord}(P)}(*,*) = G$
_		(composition coincides with group multiplication)
Δ	$\{[i] \mid i \ge -1\}$	Order Preserving Maps
(Simplicial)	$[i] = \{0,, i\}$ for $i > -1$	
	$[-1] = \varnothing$	

Naturally, there is a concept of a *subcategory*. Here are some examples of subcategories from the list above:

(1) **Top** is a subcategory of **Set**

(2) **Grp** is a subcategory of **Set**

(3) Ab is a subcateory of Grp

Sometimes the Hom-sets of the subcategory are the same as in the whole category. In this case, we call the subcategory a *full subcategory*. To state this formally:

Definition 2 (Full Subcategory). Let \mathcal{D} be a subcategory of \mathcal{C} . We say \mathcal{D} is a full subcategory of \mathcal{C} if for all $A, B \in Ob(\mathcal{D})$

$$Hom_{\mathcal{D}}(A,B) = Hom_{\mathcal{C}}(A,B)$$
.

An example of a full subcategory is the third one above, and non examples are the other two.

Given a category, we may obtain new categories in various ways. One such way is to "turn around all the arrows". A more precise definition is:

Definition 3 (Opposite of a Category). Give a category C, we define its opposite, denoted C^{op} , as the category with the same objects as C, but with $Hom_{C^{op}}(A, B) := Hom_{C}(B, A)$. Composition in this category is defined as follows: if $f^* \in Hom_{C^{op}}(A, B)$ comes from $f \in Hom_{C}(B, A)$, then composition with $g^* \in Hom_{C^{op}}(B, C)$ is given by

$$g^* \circ f^* = (f \circ g)^*.$$

A nice example of an opposite category is the opposite of k-vect. We get an equivalence of categories (to be defined) between k-vect and $k - \text{vect}^{op}$ by dualization, i.e.

$$\begin{array}{rrrr} k - \mathbf{vect} & \stackrel{*}{\longrightarrow} & k - \mathbf{vect}^{op} \\ & V & \mapsto & V^* \\ \phi: V \to W & \mapsto & \phi^*: W^* \to V^* \end{array}$$

Of course things don't always work out so nicely. Consider, for example, the category **Set**. The best we can do here (and this is probably still nicer than what we can do in most cases) is embed \mathbf{Set}^{op} into \mathbf{Set} via

$$\begin{array}{rccc} \mathbf{Set}^{op} & \longrightarrow & \mathbf{Set} \\ & A & \mapsto & \wp(A) \\ f^*: A \to B & \mapsto & f^{-1}: \wp(A) \to \wp(B) \end{array}$$

Assuming that the category \mathcal{C} is not too large, one more construction we can do is to quotient by isomorphisms. The quotient category, call it \mathcal{C}' has objects a representative from each equivalence class of objects (chosen by the axiom of choice) (two objects A and B in \mathcal{C} are isomorphic if an element of Hom_{\mathcal{C}} (A, B) is an isomorphism in the category \mathcal{C}). \mathcal{C}' is the subcategory of \mathcal{C} generated by these objects.

Now we will focus on special types of objects in a category (which will become important in the next section).

Definition 4 (Initial/Terminal Object). Let C be a category. An object I in C is called initial if $Hom_{\mathcal{C}}(I, A)$ has one element for all objects A in C. Analogously, a terminal object T in C is one such that $Hom_{\mathcal{C}}(A, T)$ consists of one element for all A. An object which is both initial and terminal is called a zero or null object.

Not every category has initial or terminal objects (or either). Here are some examples of categories and their initial and/or terminal objects:

Category	Initial Object	Terminal Object
Set	Ø	{*}
Grp	$\{e\}$	$\{e\}$
R-Mod	{0}	{0}
Тор	Ø	{*}
$\operatorname{Set}_{ eq arnothing}$	none	$\{e\}$
Field	none	none
$\mathbf{Ord}(P)$	The least element	The greatest element
	(if it exists)	(if it exists)

Now we turn our attention to morphisms between categories.

Definition 5 (Functor). Let C and D be categories. A functor, $F : C \to D$, is a pair of maps

$$F: Ob(\mathcal{C}) \rightarrow Ob(\mathcal{D})$$
$$F_{A,B}: Hom_{\mathcal{C}}(A, B) \rightarrow Hom_{\mathcal{D}}(F(A), F(B))$$

such that:

•
$$F(id_A) = id_{F(A)}$$

•
$$F(f \circ g) = F(f) \circ F(g)$$

(If instead $F_{A,B}$: Hom_{\mathcal{C}} $(A, B) \to$ Hom_{\mathcal{D}}(F(B), F(A)) and the second bullet in the definition is replaced with $F(f \circ g) = F(g) \circ F(f)$, we call F a *contravariant* functor. We can always turn a contravariant functor into a (covariant) functor by instead considering F from \mathcal{C}^{op} to \mathcal{D} instead.)

We call a functor *forgetful* if we lose structure in passing to the image. Here are some examples of functors:

(1) $\pi_n : \mathbf{Top}_* \to \mathbf{Grp}$

(2) H^k : **Top** \rightarrow **Ab** (this is actually contravariant)

(3) $F : \mathbf{Grp} \to \mathbf{Set}$ (an example of a forgetful functor)

Now we have to ask what does it mean for two categories to be equivalent:

Definition 6 (Fully Faithful & Equivalence). A functor $F : \mathcal{C} \to \mathcal{D}$ is called fully faithful if for any A and B objects in \mathcal{C} the map

$$F_{A,B}: Hom_{\mathcal{C}}(A,B) \to Hom_{\mathcal{D}}(F(A),F(B))$$

is bijective. Moreover, we say F is an equivalence of categories if, in addition, for any $D \in Ob(\mathcal{D})$ there is a $C \in Ob(\mathcal{C})$ such that F(C) is isomorphic to D.

Note that an equivalence of categories does not mean that there is a bijection on the classes of objects, but rather on isomorphism classes of objects. There is a notion of an isomorphism of categories which is as follows: We say that a functor $F : \mathcal{C} \to \mathcal{D}$ is an *isomorphism* of categories if

there exists another functor $G : \mathcal{D} \to \mathcal{C}$ such that $G \circ F$ is the identity functor on \mathcal{C} and $F \circ G$ is the identity functor on \mathcal{D} . An equivalence of categories also has a similar definition, in which the compositions are only required to be naturally isomorphic to the identity in a sense we are about to define. In the meantime, here is a simple exercise

Exercise 1.

- (a) Supply the details for the definition of the category of categories, Cat. Hint: You might have to restrict which kind of categories you consider as objects of this category, otherwise you will run into a Russel's paradox.
- (b) Does Cat have an initial and/or terminal object? If so, identify them. Does Cat have a zero object?
- (c) Is **Cat** a small category?
- (d) If you are ambitious enough, make sense of **Cat** as a 2-category (I will not define this here, go look it up). You will need the following definition to do this.

We also have a notion of a map between functors, known as a natural transformation.

Definition 7 (Natural Transformation). Let C and D be categories and let F and G be two functors from C to D. A natural transformation is a function $\eta : F \xrightarrow{\bullet} G$ such that for all $C, C' \in Ob(C)$ there are morphisms $\eta_C : F(C) \to G(C)$ such that for all $f \in Hom_{\mathcal{C}}(C, C')$ the diagram

commutes.

A last definition in this section is one of types of morphisms in a category.

Definition 8 (Monomorphism/Epimorphism/Isomorphism). Let C be a category and $A, B, C \in Ob(C)$. A morphism $f \in Hom_{\mathcal{C}}(B,C)$ is called a monomorphism if for all $g, h \in Hom_{\mathcal{C}}(A,B)$ with $f \circ g = f \circ h$, we have g = h. $f \in Hom_{\mathcal{C}}(A,B)$ is called an epimorphism if for all $g, h \in Hom_{\mathcal{C}}(B,C)$ with $g \circ f = h \circ f$ we have g = h. $f \in Hom_{\mathcal{C}}(A,B)$ is an isomorphism is there is a $g \in Hom_{\mathcal{C}}(B,A)$ such that $f \circ g = id_B$ and $g \circ f = id_A$.

6.2. Additive and Abelian Categories. In this section we will set up machinery that will be useful in later sections. This machinery consists of types of inherent operations in a category.

Definition 9 (Products/Coproducts/Biproducts). Let \mathcal{A} be a category and let $\{A_i \mid i \in I\}$ be a collection of objects in \mathcal{A} .

(1) A product for the family $\{A_i \mid i \in I\}$ is an object P (often denoted $\prod_i A_i$) of \mathcal{A} together with a family of morphisms $\{\pi_i : P \to A_i \mid i \in I\}$ such that for any object Q and collection of morphisms $\{\phi_i : Q \to A_i \mid i \in I\}$, there is a unique morphism $\psi : Q \to P$ such that $\pi_i \circ \psi = \phi_i$. For $I = \{1, 2\}$, this pictorally looks like:

(2) A coproduct for the family $\{A_i \mid i \in I\}$ is an object C (often denoted $\sum_i A_i$) of \mathcal{A} together with a family of morphisms $\{\iota_i : C \to A_i \mid i \in I\}$ such that for any object D and collection of morphisms $\{\phi_i : Q \to A_i \mid i \in I\}$, there is a unique morphism $\psi : C \to D$ such that $\psi \circ \iota_i = \phi_i$. For $I = \{1, 2\}$, this pictorally looks like:

(3) Suppose now that \mathcal{A} has a zero object. A biproduct for the family $\{A_i \mid i = 1, ..., n\}$ is an object B (often denoted $\bigoplus_i A_i$) of \mathcal{A} which is both the product and coproduct of the family, and for which the collection of morphisms π_i and ι_i satisfy

$$\pi_i \circ \iota_j = \begin{cases} id_{A_i}, & i = j \\ 0, & i \neq j \end{cases}$$

For example, when n = 2, the "biproduct diagram" takes the form

$$A_1 \xrightarrow[\pi_1]{\iota_1} A_1 \oplus A_2 \xrightarrow[\pi_2]{\iota_2} A_2$$

 \mathcal{A} is said to have finite products/coproducts/biproducts if it has products/coproducts/biproducts when I is a finite set.

Now another definition

Definition 10 (Additive Category). A category \mathcal{A} is called additive if

- (1) \mathcal{A} has a zero object, 0, (This give a unique zero map between any two objects A and B via the unique $A \to 0 \to B$.)
- (2) $Hom_{\mathcal{A}}(A, B)$ is an abelian gorup for all $A, B \in Ob(\mathcal{A})$ where the zero map is the identity and composition is bilinear,
- (3) \mathcal{A} has finite biproducts.

Now we will construct the other type of category in the title, but first we need to define a few more things:

Definition 11 (Kernel/Cokernel and Image/Coimage). Let \mathcal{A} be a category with zero morphisms and let $A, B \in Ob(\mathcal{A})$. Let $f \in Hom_{\mathcal{A}}(A, B)$.

(1) The kernel of f is a pair (K, k) where $K \in Ob(\mathcal{A})$ and $k : K \to A$ is such that $f \circ k = 0$ and if there is a $g \in Hom_{\mathcal{A}}(P, A)$ such that $f \circ g = 0$, there is a unique $h \in Hom_{\mathcal{A}}(P, K)$ such that $g = k \circ h$. That is

(2) The cohernel of f is a pair (C, c) where $C \in Ob(\mathcal{A})$ and $c : B \to C$ is such that $c \circ f = 0$ and if there is a $q \in Hom_{\mathcal{A}}(B, Q)$ such that $q \circ f = 0$, there is a unique $d \in Hom_{\mathcal{A}}(C, Q)$ such that $d \circ c = q$. That is

(3) The image of f is the kernel of its cokernel, and the coimage of f is the cokernel of its kernel.

It is worth noting that kernels are always monomorphisms and cokernels are always epimorphisms (see Exercise 2 of section 6.2 in the notes). Finally, we have the technology to define an abelian category:

Definition 12 (Abelian Category). An abelian category is an additive category such that

- (1) every morphism has a kernel and cokernel
- (2) the natural map, σ , from the coimage of a morphism to the image of the morphism is an isomorphism

equivalently, we can phrase (2) as:

(2) every morphism $f: A \to B$ has a factorization

where u and v are the natural maps. u is an epimorphism and v is a monomorphism (see Exercise 2 of section 6.2 of the notes).

What is this natural map in (2)? To construct it, consider the diagram

$$\ker(f) \xrightarrow{k} A \xrightarrow{f} B \xrightarrow{c} \operatorname{coker}(f)$$

$$\underset{v \neq c}{\overset{w \neq c}}}\overset{w \neq c}{\overset{w \neq c}}\overset{w \leftarrow{w \leftarrow}}\overset{w \leftarrow{w \neq c}}\overset{w \leftarrow{w \leftarrow}}}\overset{w \leftarrow{w \leftarrow}}\overset{w \leftarrow}}\overset{w \leftarrow{w \leftarrow}}\overset{w \leftarrow}}\overset{w \leftarrow{w \leftarrow}}\overset{w \leftarrow}\overset{w \leftarrow}}\overset{w \leftarrow}}\overset{w \leftarrow}}\overset{w \leftarrow}}\overset{w \leftarrow}}\overset$$

u is an epimorphism since it is a cokernel, and *v* is a monomorphism since it is a kernel. The existence of ψ comes from the fact that $f \circ k = 0$, so since *u* is a cokernel, by the definition of cokernel there is a unique map ψ : coker $(k) \to B$. Note that $p \circ f = 0$, and since $f = \psi \circ u$ we have $p \circ \psi \circ u = 0$. Since *u* is an epimorphism, we have that, in fact, $p \circ \psi = 0$. Doing the same trick, this time thinking of kernels, since $p \circ \psi = 0$, we have a unique map σ : coim $(f) \to \text{ im } (f)$. (I'll leave what's left of Exercise 2 (part 7) of the notes (Viterbo's notes, not these ones) for you to do.)

Exercise 2. Show that the kernel of a monomorphism is (isomorphic to) 0, and the cokernel of an epimorphism is (isomorphic to) 0.

Proposition 1. Let \mathcal{A} be an abelian category. Then a morphism which is both a monomorphism and an epimorphism is an isomorphism.

Proof. Let $f : A \to B$ be a monomorphism and an epimorphism. By the previous exercise, the kernel/cokernel diagram for f is

$$0 \xrightarrow{k} A \xrightarrow{f} B \xrightarrow{c} 0$$

A moment's thought shows that the cokernel of k is the pair (A, id_A) , and the kernel of c is the pair (B, id_B) . We have the diagram

$$0 \xrightarrow{k} A \xrightarrow{f} B \xrightarrow{c} 0$$

$$\downarrow^{\text{id}_A} \downarrow \qquad \uparrow^{\text{id}_B}$$

$$A = \operatorname{coim}(f) = \operatorname{coker}(k) \xrightarrow{\sigma} B = \ker(c) = \operatorname{im}(f)$$

Thus we have $f = \operatorname{id}_B \circ \sigma \circ \operatorname{id}_A$, and since all three on the right hand side are isomorphisms, so is f.

Now we move to the notion of an exact sequence.

Definition 13 (Exact Sequence). Let \mathcal{A} be an abelian category. A sequence of maps $A \xrightarrow{f} B \xrightarrow{g} C$ in \mathcal{A} is called exact if $g \circ f = 0$ and the natural map from im(f) to ker(g) is an isomorphism. We say the sequence is split exact if, in addition, there is a map $h: C \to B$ such that $g \circ h = id_C$.

The map from im(f) to ker(g) is obtained via the following diagram:

where u and v are the factorization of f from (2'). To obtain w notice that since $g \circ v \circ u = g \circ f = 0$ and u is an epimorphism, we have that $g \circ v = 0$, but then by definition of the kernel of g, we get a unique map $w : \operatorname{im}(f) \to \operatorname{ker}(g)$, as desired.

Note that $0 \to A \xrightarrow{f} B$ is exact iff f is a monomorphism, and $A \xrightarrow{f} B \to 0$ is exact iff f is an epimorphism. In fact,

Proposition 2. If

 $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$

is an exact sequence, then the kernel of g is the pair (A, f) and the cokernel of f is the pair (C, g).

Proof. Consider the diagram

w is an isomorphism by assumption, so it will suffice to show that u is an isomorphism (again, u and v are as in (2')). Exercise 2 of the notes shows that u is an epimorphism, and since we have the factorization

and f is a monomorphism, it follows that u is a monomorphism. Thus, since we are in an abelian category, u is an isomorphism, and hence the kernel of g is isomorphic to the pair (A, f).

Exercise 3.

- (1) Let C be a category and suppose that f is a morphism in C with $f = g \circ h$. If f is a monomorphism, show that h is a monomorphism. Likewise, if f is a epimorphism, show that g is an epimorphism.
- (2) Prove the second claim in the proposition.

Definition 14 ((Left/Right)-Exact Functor). Let F be a functor between additive categories. We say that F is additive if the associated map from Hom(A, B) to Hom(F(A), F(B)) is an abelian group homomorphism. Let F be a functor between abelian categories. We say that F is exact if it transforms exact sequences into exact sequences. F is left-exact if it transforms an exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C$ into an exact sequence $0 \to F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C)$. It is called right-exact if it transforms a exact sequence $A \xrightarrow{f} B \xrightarrow{g} C \to 0$ into an exact sequence $F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C) \to 0$.

We will close this section with some examples:

- (1) Let \mathcal{A} be an additive category and fix an object X in \mathcal{A} . The functor sending the object A to Hom_{\mathcal{A}} (X, A) (this is a functor from \mathcal{A} to Ab) is left-exact.
- (2) Fix a *R*-*R*-bimodule *N*. The functor from *R*-**Mod** to itself sending *M* to $N \otimes_R M$ is right-exact.

6.3. The Category of Chain Complexes. Given an abelian category \mathcal{A} , we may associate to it the category Chain(\mathcal{A}) of *chain complexes in* \mathcal{A} . The objects of this category are sequences (often denoted $(\mathcal{A}^{\bullet}, \partial)$):

$$\cdots \xrightarrow{d_{m-2}} A_{m-1} \xrightarrow{d_{m-1}} A_m \xrightarrow{d_m} A_{m+1} \xrightarrow{d_{m+1}} A_{m+2} \xrightarrow{d_{m+2}} \cdots$$

such that the *boundary maps* d_m satisfy $d_m \circ d_{m-1} = 0$. (Yes, these are *technically* cochain complexes, but Viterbo decides he wants to call them chain complexes, so rather than try to rewrite his notes, I will just call them chain complexes as well. We will still be taking the cohomology of them though.) The morphisms in this category are maps $u : A^{\bullet} \to B^{\bullet}$ such that

is commutative.

This category has some natural subcategories, namely the subcategory of bounded complexes $\mathbf{Chain}^{b}(\mathcal{A})$, of complexes bounded below $\mathbf{Chain}^{+}(\mathcal{A})$, and complexes bounded above $\mathbf{Chain}^{-}(\mathcal{A})$. We may actually even think of \mathcal{A} as a subcategory of $\mathbf{Chain}(\mathcal{A})$ by identifying \mathcal{A} with $0 \to \mathcal{A} \to 0$. This actually gives \mathcal{A} as a full subcategory of $\mathbf{Chain}(\mathcal{A})$.

We can take the cohomology of a chain complex (A^{\bullet}, d) as usual by defining the m^{th} cohomology to be $\mathscr{H}^m(A^{\bullet}) := \ker(d_m) / \operatorname{im}(d_{m-1})$. (The quotient is the cokernel of the natural map from $\operatorname{im}(d_{m-1})$ to $\ker(d_m)$.) We may actually consider the cohomology as a chain complex where the boundary maps are the zero map. We will denote this by $\mathscr{H}^*(A^{\bullet})$.

We will now state a proposition without proof (or you can think of the proof as an exercise):

Proposition 3.

- (1) Let \mathcal{A} be an abelian category. Then $\operatorname{Chain}^{b}(\mathcal{A})$, $\operatorname{Chain}^{+}(\mathcal{A})$, and $\operatorname{Chain}^{-}(\mathcal{A})$ are abelian categories.
- (2) The map from $\operatorname{Chain}(\mathcal{A})$ to $\operatorname{Chain}(\mathcal{A})$ by taking cohomology is a functor. In particular, any morphism u from a complex A^{\bullet} to B^{\bullet} induces a map $u_* : \mathscr{H}^*(A^{\bullet}) \to \mathscr{H}^*(B^{\bullet})$. If, moreover, u and v are chain homotopic, i.e. there is a map $P : A^{\bullet} \to B^{\bullet}$ such that $P_m : I_m \to J_{m-1}$ with $u v = \partial_{m-1} \circ P_m + P_{m+1} \circ d_m$, then $u_* = v_*$.

One last definition:

Definition 15 (Quasi-isomorphism). A map $u : A^{\bullet} \to B^{\bullet}$ is called a quasi-isomorphism if the induced map u_* is an isomorphism.

A chain map $u: A^{\bullet} \to B^{\bullet}$ is a *chain homotopy equivalence* iff there is a chain map $v: B^{\bullet} \to A^{\bullet}$ such that $u \circ v$ and $v \circ u$ are chain homotopic to the appropriate identities. A chain homotopy equivalence is a quasi-isomorphism, but the converse is not true.

Proposition 4. Given a short exact sequence of chain complexes

$$0 \longrightarrow A^{\bullet} \longrightarrow B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow 0$$

there is a long exact sequence

$$\cdots \to \mathscr{H}^m(A^{\bullet}) \to \mathscr{H}^m(B^{\bullet}) \to \mathscr{H}^m(C^{\bullet}) \xrightarrow{\delta} \mathscr{H}^{m+1}(A^{\bullet}) \to \cdots$$

Remark. Suppose the original sequence in the proposition is split. Then we can construct a sequence of chain maps

$$\cdots \to A^{\bullet} \xrightarrow{f} B^{\bullet} \xrightarrow{g} C^{\bullet} \xrightarrow{\delta} A^{\bullet}[1] \xrightarrow{f[1]} B^{\bullet}[1] \to \cdots$$

where $(A^{\bullet}[k])_m = A_{k+m}$ and $d_{A^{\bullet}[k]} = (-1)^k d_{A^{\bullet}}$ and the long exact sequence in the proposition is obtained by taking the cohomology of this sequence of chain maps.

Finally, we will close on a big theorem that makes proving things in this category a lot easier, and an application of it:

Theorem 1 (Freyd-Mitchell). Let \mathcal{A} be a small abelian category. There exists a ring R and a functor

$$F: \mathcal{A} \to R - \mathbf{Mod}$$

which is fully faithful and exact.

As an example of an application of this theorem is

Lemma 1 (Snake Lemma). In an abelian category, consider a commutative diagram:

$$A \xrightarrow{f} b \xrightarrow{g} C \longrightarrow 0$$
$$\downarrow^{a} \downarrow^{b} \downarrow^{c}$$
$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C'$$

where the rows are exact and 0 is the zero object. Then there is an exact sequence relating the kernels and cokernels of a, b, and c:

 $\ker(a) \to \ker(b) \to \ker(c) \xrightarrow{d} coker(a) \to coker(b) \to coker(c)$

Further, if the morphism f is a monomorphism, then so is $ker(a) \rightarrow ker(b)$, and if g' is an epimorphism, then so is $coker(b) \rightarrow coker(c)$.

Sketch of Proof. Let's work in the abelian category generated by the objects and morphisms in the diagram. This is a small category, and so we may apply Freyd-Mitchell to think of all the objects as R-modules and morphisms as R-module homomorphisms. Since the functor given by Freyd-Mitchell is fully faithful, the map d constructed in R-Mod will have a corresponding map d in the original category. From here it is just commutative algebra.

References

- [1] T. Hungerford, Algebra, Springer GTM, (1974).
- [2] S. Mac Lane, Categories for the Working Mathematician, 2nd edition, Springer GTM, (1998).
- [3] C. Viterbo, An Introduction to Symplectic Topology through Sheaf Theory, http://www.math.polytechnique.fr/cmat/viterbo/Eilenberg/Eilenberg.pdf (2011).