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6. Categories and Sheaves
6.1. The Language of Categories. Intuitively, a category can be thought of as a bunch
of “dots and arrows”, where the arrows satisfy some certain properties. The “dots” are the objects
of a category, and the “arrows” are the morphisms. Formally, we define a category as:

Definition 1 (Category). A category C consists of:

• a class of objects, denoted Ob (C)
• for any A,B,C ∈ Ob (C), a class of morphisms, HomC (A,B) , together with a composition

◦ : HomC (A,B) × HomC (B,C) → HomC (A,C)
(f, g) 7→ g ◦ f

which is
(1) associative
(2) has an identity: for A,B ∈ Ob (C) there is id A ∈ HomC (A,A) and id B ∈ HomC (B,B)

such that for all f ∈ HomC (A,B) we have id B ◦ f = f = f ◦ id A.

We call a category small if Ob (C) is a set and all HomC (A,B) are sets. We say C is locally small
if only the second condition is satisfied.

Here are some trivial examples of categories:

0: This is the category with no objects and no morphisms. This is it pictorally:

1: This is the category with one object and one morphism. The definition of a category forces
this morphism to be the identity morphism on the one object. Here it is pictorally:

•99
2: This is the category with two objects and one morphism between them (of course me must

still have the identity morphisms on each element). Pictorally 2 looks like:

•99 // • ee
3: I will just draw this one:

•
��

��
•99 // • ee

__

↓↓: Again, I will just draw this one:

•99 //// • ee
1
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Now for some nontrivial examples:

Category Objects Morphisms

Set Sets Functions

Top Topological Spaces Continuous Maps

Man Smooth Manifolds Smooth Maps

VectM Smooth Vector Bundles over M Smooth Maps which are linear of fibers

Open(X) Open subsets of a topological space X Given U, V ∈ Ob (Open(X)))

HomOpen(X) (U, V ) =


{∗} U ⊂ V

∅ otherwise

Grp Groups Group Homomorphisms

Ab Abelian Groups Group Homomorphisms

R-Mod Left R-modules R-module Homomorphisms

k-Vect k-Vector Spaces k-linear maps

Pos Partially Ordered Sets (Posets) Order Preserving Maps

Ord(P ) Elements of a Poset P Given x, y ∈ Ob (Ord(P ))

HomOrd(P ) (x, y) =


{∗} x ≤ y

∅ otherwise

Ord(P ) {∗} HomOrd(P ) (∗, ∗) = G

(composition coincides with group multiplication)

∆ {[i] | i ≥ −1} Order Preserving Maps

(Simplicial) [i] = {0, ..., i} for i > −1

[−1] = ∅

Naturally, there is a concept of a subcategory. Here are some examples of subcategories from the
list above:

(1) Top is a subcategory of Set
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(2) Grp is a subcategory of Set
(3) Ab is a subcateory of Grp

Sometimes the Hom-sets of the subcategory are the same as in the whole category. In this case,
we call the subcategory a full subcategory. To state this formally:

Definition 2 (Full Subcategory). Let D be a subcategory of C. We say D is a full subcategory of
C if for all A,B ∈ Ob (D)

HomD (A,B) = HomC (A,B) .

An example of a full subcategory is the third one above, and non examples are the other two.

Given a category, we may obtain new categories in various ways. One such way is to “turn around
all the arrows”. A more precise definition is:

Definition 3 (Opposite of a Category). Give a category C, we define its opposite, denoted Cop,
as the category with the same objects as C, but with HomCop (A,B) := HomC (B,A) . Composition
in this category is defined as follows: if f ∗ ∈ HomCop (A,B) comes from f ∈ HomC (B,A) , then
composition with g∗ ∈ HomCop (B,C) is given by

g∗ ◦ f ∗ = (f ◦ g)∗.

A nice example of an opposite category is the opposite of k-vect. We get an equivalence of
categories (to be defined) between k-vect and k − vectop by dualization, i.e.

k − vect
∗−→ k − vectop

V 7→ V ∗

φ : V → W 7→ φ∗ : W ∗ → V ∗

Of course things don’t always work out so nicely. Consider, for example, the category Set. The
best we can do here (and this is probably still nicer than what we can do in most cases) is embed
Setop into Set via

Setop −→ Set

A 7→ ℘(A)

f ∗ : A→ B 7→ f−1 : ℘(A)→ ℘(B)

Assuming that the category C is not too large, one more construction we can do is to quotient by
isomorphisms. The quotient category, call it C ′ has objects a representative from each equivalence
class of objects (chosen by the axiom of choice) (two objects A and B in C are isomorphic if an
element of HomC (A,B) is an isomorphism in the category C). C ′ is the subcategory of C generated
by these objects.

Now we will focus on special types of objects in a category (which will become important in the
next section).

Definition 4 (Initial/Terminal Object). Let C be a category. An object I in C is called initial
if HomC (I, A) has one element for all objects A in C. Analogously, a terminal object T in C is
one such that HomC (A, T ) consists of one element for all A. An object which is both initial and
terminal is called a zero or null object.

Not every category has initial or terminal objects (or either). Here are some examples of categories
and their initial and/or terminal objects:
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Category Initial Object Terminal Object

Set ∅ {∗}

Grp {e} {e}

R-Mod {0} {0}

Top ∅ {∗}

Set6=∅ none {e}

Field none none

Ord(P ) The least element The greatest element

(if it exists) (if it exists)

Now we turn our attention to morphisms between categories.

Definition 5 (Functor). Let C and D be categories. A functor, F : C → D, is a pair of maps

F : Ob (C) → Ob (D)

FA,B : HomC (A,B) → HomD (F (A), F (B))

such that:

• F ( id A) = id F (A)

• F (f ◦ g) = F (f) ◦ F (g)

(If instead FA,B : HomC (A,B) → HomD (F (B), F (A)) and the second bullet in the definition is
replaced with F (f ◦ g) = F (g) ◦ F (f), we call F a contravariant functor. We can always turn a
contravariant functor into a (covariant) functor by instead considering F from Cop to D instead.)

We call a functor forgetful if we lose structure in passing to the image. Here are some examples
of functors:

(1) πn : Top∗ → Grp
(2) Hk : Top→ Ab (this is actually contravariant)
(3) F : Grp→ Set (an example of a forgetful functor)

Now we have to ask what does it mean for two categories to be equivalent:

Definition 6 (Fully Faithful & Equivalence). A functor F : C → D is called fully faithful if for
any A and B objects in C the map

FA,B : HomC (A,B) → HomD (F (A), F (B))

is bijective. Moreover, we say F is an equivalence of categories if, in addition, for any D ∈ Ob (D)
there is a C ∈ Ob (C) such that F (C) is isomorphic to D.

Note that an equivalence of categories does not mean that there is a bijection on the classes
of objects, but rather on isomorphism classes of objects. There is a notion of an isomorphism of
categories which is as follows: We say that a functor F : C → D is an isomorphism of categories if
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there exists another functor G : D → C such that G ◦ F is the identity functor on C and F ◦ G is
the identity functor on D. An equivalence of categories also has a similar definition, in which the
compositions are only required to be naturally isomorphic to the identity in a sense we are about
to define. In the meantime, here is a simple exercise

Exercise 1.

(a) Supply the details for the definition of the category of categories, Cat. Hint: You might have
to restrict which kind of categories you consider as objects of this category, otherwise you
will run into a Russel’s paradox.

(b) Does Cat have an initial and/or terminal object? If so, identify them. Does Cat have a
zero object?

(c) Is Cat a small category?
(d) If you are ambitious enough, make sense of Cat as a 2-category (I will not define this here,

go look it up). You will need the following definition to do this.

We also have a notion of a map between functors, known as a natural transformation.

Definition 7 (Natural Transformation). Let C and D be categories and let F and G be two functors

from C to D. A natural transformation is a function η : F
•→ G such that for all C,C ′ ∈ Ob (C)

there are morphisms ηC : F (C)→ G(C) such that for all f ∈ HomC (C,C ′) the diagram

F (C)
F (f)

//

ηC
��

F (C ′)

ηC′

��
G(C)

G(f)
// G(C ′)

commutes.

A last definition in this section is one of types of morphisms in a category.

Definition 8 (Monomorphism/Epimorphism/Isomorphism). Let C be a category and A,B,C ∈
Ob (C). A morphism f ∈ HomC (B,C) is called a monomorphism if for all g, h ∈ HomC (A,B)
with f ◦ g = f ◦ h, we have g = h. f ∈ HomC (A,B) is called an epimorphism if for all g, h ∈
HomC (B,C) with g ◦ f = h ◦ f we have g = h. f ∈ HomC (A,B) is an isomorphism is there is a
g ∈ HomC (B,A) such that f ◦ g = id B and g ◦ f = id A.
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6.2. Additive and Abelian Categories. In this section we will set up machinery that
will be useful in later sections. This machinery consists of types of inherent operations in a category.

Definition 9 (Products/Coproducts/Biproducts). Let A be a category and let {Ai | i ∈ I} be a
collection of objects in A.

(1) A product for the family {Ai | i ∈ I} is an object P (often denoted
∏

iAi) of A together
with a family of morphisms {πi : P → Ai | i ∈ I} such that for any object Q and collection
of morphisms {φi : Q → Ai | i ∈ I}, there is a unique morphism ψ : Q → P such that
πi ◦ ψ = φi. For I = {1, 2}, this pictorally looks like:

Q
φ1

zz

φ2

$$
∃!ψ
��

A1 A1 × A2
π1oo π2 // A2

(2) A coproduct for the family {Ai | i ∈ I} is an object C (often denoted
∑

iAi) of A together
with a family of morphisms {ιi : C → Ai | i ∈ I} such that for any object D and collection
of morphisms {φi : Q → Ai | i ∈ I}, there is a unique morphism ψ : C → D such that
ψ ◦ ιi = φi. For I = {1, 2}, this pictorally looks like:

A1
ι1 //

φ1 $$

A1 + A2

∃!ψ
��

A2
ι2oo

φ2zz
D

(3) Suppose now that A has a zero object. A biproduct for the family {Ai | i = 1, ..., n} is an
object B (often denoted ⊕iAi) of A which is both the product and coproduct of the family,
and for which the collection of morphisms πi and ιi satisfy

πi ◦ ιj =


id Ai

, i = j

0, i 6= j

.

For example, when n = 2, the “biproduct diagram” takes the form

A1

ι1 // A1 ⊕ A2
π1
oo

π2
// A2

ι2oo

A is said to have finite products/coproducts/biproducts if it has products/coproducts/biproducts
when I is a finite set.

Now another definition

Definition 10 (Additive Category). A category A is called additive if

(1) A has a zero object, 0, (This give a unique zero map between any two objects A and B via
the unique A→ 0→ B.)

(2) HomA (A,B) is an abelian gorup for all A,B ∈ Ob (A) where the zero map is the identity
and composition is bilinear,

(3) A has finite biproducts.
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Now we will construct the other type of category in the title, but first we need to define a few
more things:

Definition 11 (Kernel/Cokernel and Image/Coimage). Let A be a category with zero morphisms
and let A,B ∈ Ob (A). Let f ∈ HomA (A,B) .

(1) The kernel of f is a pair (K, k) where K ∈ Ob (A) and k : K → A is such that f ◦ k = 0
and if there is a g ∈ HomA (P,A) such that f ◦ g = 0, there is a unique h ∈ HomA (P,K)
such that g = k ◦ h. That is

K
k // A

f // B

P
∃!h

``

g

OO

(2) The cokernel of f is a pair (C, c) where C ∈ Ob (A) and c : B → C is such that c ◦ f = 0
and if there is a q ∈ HomA (B,Q) such that q ◦ f = 0, there is a unique d ∈ HomA (C,Q)
such that d ◦ c = q. That is

A
f // B

c //

q

��

C

∃!d��
Q

(3) The image of f is the kernel of its cokernel, and the coimage of f is the cokernel of its
kernel.

It is worth noting that kernels are always monomorphisms and cokernels are always epimorphisms
(see Exercise 2 of section 6.2 in the notes). Finally, we have the technology to define an abelian
category:

Definition 12 (Abelian Category). An abelian category is an additive category such that

(1) every morphism has a kernel and cokernel
(2) the natural map, σ, from the coimage of a morphism to the image of the morphism is an

isomorphism

equivalently, we can phrase (2) as:

(2’) every morphism f : A→ B has a factorization

ker(f)
k // A

u //

f

&&
im (f)

v // B
c // coker (f)

where u and v are the natural maps. u is an epimorphism and v is a monomorphism (see
Exercise 2 of section 6.2 of the notes).
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What is this natural map in (2)? To construct it, consider the diagram

ker(f)
k // A

f //

u

��

B
c // coker (f)

coim (f) = coker (k)

ψ

55

ker(c) = im (f)

v

OO

u is an epimorphism since it is a cokernel, and v is a monomorphism since it is a kernel. The
existence of ψ comes from the fact that f ◦ k = 0, so since u is a cokernel, by the definition of
cokernel there is a unique map ψ : coker (k)→ B. Note that p ◦ f = 0, and since f = ψ ◦u we have
p ◦ ψ ◦ u = 0. Since u is an epimorphism, we have that, in fact, p ◦ ψ = 0. Doing the same trick,
this time thinking of kernels, since p ◦ ψ = 0, we have a unique map σ : coim (f) → im (f). (I’ll
leave what’s left of Exercise 2 (part 7) of the notes (Viterbo’s notes, not these ones) for you to do.)

Exercise 2. Show that the kernel of a monomorphism is (isomorphic to) 0, and the cokernel of an
epimorphism is (isomorphic to) 0.

Proposition 1. Let A be an abelian category. Then a morphism which is both a monomorphism
and an epimorphism is an isomorphism.

Proof. Let f : A → B be a monomorphism and an epimorphism. By the previous exercise, the
kernel/cokernel diagram for f is

0
k // A

f // B
c // 0

A moment’s thought shows that the cokernel of k is the pair (A, id A), and the kernel of c is the
pair (B, id B). We have the diagram

0
k // A

f //

idA

��

B
c // 0

A = coim (f) = coker (k)
σ // B = ker(c) = im (f)

idB

OO

Thus we have f = id B ◦ σ ◦ id A, and since all three on the right hand side are isomorphisms, so is
f . �

Now we move to the notion of an exact sequence.

Definition 13 (Exact Sequence). Let A be an abelian category. A sequence of maps A
f→ B

g→ C
in A is called exact if g ◦ f = 0 and the natural map from im (f) to ker(g) is an isomorphism. We
say the sequence is split exact if, in addition, there is a map h : C → B such that g ◦ h = id C.

The map from im (f) to ker(g) is obtained via the following diagram:

im (f)
v

""

w // ker(g)
k

||
A

u

OO

f // B
g // C
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where u and v are the factorization of f from (2’). To obtain w notice that since g ◦v ◦u = g ◦f = 0
and u is an epimorphism, we have that g ◦ v = 0, but then by definition of the kernel of g, we get
a unique map w : im (f)→ ker(g), as desired.

Note that 0 → A
f→ B is exact iff f is a monomorphism, and A

f→ B → 0 is exact iff f is an
epimorphism. In fact,

Proposition 2. If

0 −→ A
f−→ B

g−→ C −→ 0

is an exact sequence, then the kernel of g is the pair (A, f) and the cokernel of f is the pair (C, g).

Proof. Consider the diagram

im (f)
v

""

w // ker(g)
k

||
0 // A

u

OO

f // B
g // C

w is an isomorphism by assumption, so it will suffice to show that u is an isomorphism (again, u
and v are as in (2’)). Exercise 2 of the notes shows that u is an epimorphism, and since we have
the factorization

0
k // A

u //

f

&&
im (f)

v // B
and f is a monomorphism, it follows that u is a monomorphism. Thus, since we are in an abelian
category, u is an isomorphism, and hence the kernel of g is isomorphic to the pair (A, f). �

Exercise 3.

(1) Let C be a category and suppose that f is a morphism in C with f = g ◦ h. If f is a
monomorphism, show that h is a monomorphism. Likewise, if f is a epimorphism, show
that g is an epimorphism.

(2) Prove the second claim in the proposition.

Definition 14 ((Left/Right)-Exact Functor). Let F be a functor between additive categories. We
say that F is additive if the associated map from Hom (A,B) to Hom (F (A), F (B)) is an abelian
group homomorphism. Let F be a functor between abelian categories. We say that F is exact if it
transforms exact sequences into exact sequences. F is left-exact if it transforms an exact sequence

0 → A
f→ B

g→ C into an exact sequence 0 → F (A)
F (f)→ F (B)

F (g)→ F (C). It is called right-exact

if it transforms a exact sequence A
f→ B

g→ C → 0 into an exact sequence F (A)
F (f)→ F (B)

F (g)→
F (C)→ 0.

We will close this section with some examples:

(1) Let A be an additive category and fix an object X in A. The functor sending the object A
to HomA (X,A) (this is a functor from A to Ab) is left-exact.

(2) Fix a R-R-bimodule N . The functor from R-Mod to itself sending M to N ⊗R M is
right-exact.
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6.3. The Category of Chain Complexes. Given an abelian category A, we may as-
sociate to it the category Chain(A) of chain complexes in A. The objects of this category are
sequences (often denoted (A•, ∂)):

· · · dm−2−→ Am−1
dm−1−→ Am

dm−→ Am+1
dm+1−→ Am+2

dm+2−→ · · ·

such that the boundary maps dm satisfy dm ◦ dm−1 = 0. (Yes, these are *technically* cochain
complexes, but Viterbo decides he wants to call them chain complexes, so rather than try to rewrite
his notes, I will just call them chain complexes as well. We will still be taking the cohomology of
them though.) The morphisms in this category are maps u : A• → B• such that

· · ·
dm−2// Am−1

dm−1 //

um−1

��

Am
dm //

um
��

Am+1

dm+1 //

um+1

��

Am+2

dm+2 //

um+2

��

· · ·

· · ·
∂m−2// Bm−1

∂m−1 // Bm
∂m // Bm+1

∂m+1 // Bm+2

∂m+2 // · · ·
is commutative.

This category has some natural subcategories, namely the subcategory of bounded complexes
Chainb(A), of complexes bounded below Chain+(A), and complexes bounded above Chain−(A).
We may actually even think of A as a subcategory of Chain(A) by identifying A with 0→ A→ 0.
This actually gives A as a full subcategory of Chain(A).

We can take the cohomology of a chain complex (A•, d) as usual by defining the mth cohomol-
ogy to be H m(A•) := ker(dm)/ im (dm−1). (The quotient is the cokernel of the natural map from
im (dm−1) to ker(dm).) We may actually consider the cohomology as a chain complex where the
boundary maps are the zero map. We will denote this by H ∗(A•).

We will now state a proposition without proof (or you can think of the proof as an exercise):

Proposition 3.

(1) Let A be an abelian category. Then Chainb(A), Chain+(A), and Chain−(A) are abelian
categories.

(2) The map from Chain(A) to Chain(A) by taking cohomology is a functor. In particular, any
morphism u from a complex A• to B• induces a map u∗ : H ∗(A•)→H ∗(B•). If, moreover,
u and v are chain homotopic, i.e. there is a map P : A• → B• such that Pm : Im → Jm−1
with u− v = ∂m−1 ◦ Pm + Pm+1 ◦ dm, then u∗ = v∗.

One last definition:

Definition 15 (Quasi-isomorphism). A map u : A• → B• is called a quasi-isomorphism if the
induced map u∗ is an isomorphism.

A chain map u : A• → B• is a chain homotopy equivalence iff there is a chain map v : B• → A•

such that u ◦ v and v ◦ u are chain homotopic to the appropriate identities. A chain homotopy
equivalence is a quasi-isomorphism, but the converse is not true.

Proposition 4. Given a short exact sequence of chain complexes

0 −→ A• −→ B• −→ C• −→ 0
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there is a long exact sequence

· · · →H m(A•)→H m(B•)→H m(C•)
δ→H m+1(A•)→ · · ·

Remark. Suppose the original sequence in the proposition is split. Then we can construct a se-
quence of chain maps

· · · → A•
f→ B•

g→ C•
δ→ A•[1]

f [1]→ B•[1]→ · · ·
where (A•[k])m = Ak+m and dA•[k] = (−1)kdA• and the long exact sequence in the proposition is
obtained by taking the cohomology of this sequence of chain maps.

Finally, we will close on a big theorem that makes proving things in this category a lot easier,
and an application of it:

Theorem 1 (Freyd-Mitchell). Let A be a small abelian category. There exists a ring R and a
functor

F : A → R−Mod

which is fully faithful and exact.

As an example of an application of this theorem is

Lemma 1 (Snake Lemma). In an abelian category, consider a commutative diagram:

A
f //

a
��

b
g //

b
��

C //

c
��

0

0 // A′
f ′ // B′

g′ // C ′

where the rows are exact and 0 is the zero object. Then there is an exact sequence relating the
kernels and cokernels of a, b, and c:

ker(a)→ ker(b)→ ker(c)
d→ coker (a)→ coker (b)→ coker (c)

Further, if the morphism f is a monomorphism, then so is ker(a)→ ker(b), and if g′ is an epimor-
phism, then so is coker (b)→ coker (c).

Sketch of Proof. Let’s work in the abelian category generated by the objects and morphisms in the
diagram. This is a small category, and so we may apply Freyd-Mitchell to think of all the objects as
R-modules and morphisms as R-module homomorphisms. Since the functor given by Freyd-Mitchell
is fully faithful, the map d constructed in R-Mod will have a corresponding map d in the original
category. From here it is just commutative algebra. �
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